Stat 201: Introduction to Statistics

Standard 8: Numerical Summaries - Empirical Rule

Chapter Two

Summaries

From Naked Statistics: Descriptive Statistics

- "The standard deviation is the descriptive statistic that allows us to assign a single number to this dispersion around the mean."
- "The beauty of the normal distribution- its Michael Jordan power, finesse, and elegance comes from the fact that we know by definition exactly what proportion off the observations in a normal distribution lie within one standard deviation of the mean (68\%), within two standard deviations of the mean (95\%), within three standard deviations of the mean (99.7\%)."

The Empirical Rule

- About 68% of data fall within 1 standard deviation of the mean
- About 95\% of data fall within 2 standard deviation of the mean
- About 99.7\% of data fall within 3 standard deviation of the mean
- The distribution must be symmetric and bell shaped to use this Rule

The Empirical Rule with z-scores

- About 68% of data fall between $\mathrm{z}=-1$ and $\mathrm{z}=1$
- About 95% of data fall between $\mathrm{z}=-2$ and $\mathrm{z}=2$
- About 99.7% of data fall between $\mathrm{z}=-3$ and $\mathrm{z}=3$
- The distribution must be symmetric and bell shaped to use this Rule

Z Score: How Do We Calculate It?

- $z=\frac{\text { observation }- \text { mean }}{\text { standard deviation }}$
- This gives us the number of standard deviations from the mean the observation is
- Note: we consider any observation with a Z score above $\mathbf{3}$ or below -3 an outlier

Empirical Rule

Walkthrough

The Empirical Rule: Example

- The average college student consumes 640 cans of beer each year. Assume the distribution of cans of beers consumed per college student is bell-shaped with a mean of 640 cans and a standard deviation of 60 cans.

The Empirical Rule: Example

- What percent of students consume less than 700 cans of beer per year?

The Empirical Rule: Example

- What percent of students consume less than 700 cans of beer per year?
- We can add up the area under the curve as we go left
2.5\%+13.5\%+34\%+34\%+.15\%
= 84%

The Empirical Rule: Example

- What percent of students consume less than 700 cans of beer per year?
- We can subtract the area from 100% as we go right 100\%-13.5\%-2.5\%-.15\%
= 84%

The Empirical Rule: Example

- What percent of students consume more than 700 cans of beer per year?

The Empirical Rule: Example

- What percent of students consume more than 700 cans of beer per year?
- We can add up the area under the curve as we go right $13.5 \%+2.35 \%+.15 \%=16 \%$

The Empirical Rule: Example

- What percent of students consume more than 700 cans of beer per year?
- We can subtract the area from 100% as we go left 100\%-34\%-34\%-13.5\%-2.5\%-15\% $100 \%-84 \%$ (we know 84% from the last question) = 16%

The Empirical Rule: Example

- What percent of students consume between 460 and 700 cans of beer per year?

The Empirical Rule: Example

- What percent of students consume between 460 and 700 cans of beer each year?
- We can add up the area under the curve as we go from 460 to 700
$2.35 \%+13.5 \%+34 \%+34 \%=83.85 \%$

Z Score: If you don't know what it is you can't afford it.

- What happens when we're interested in percentiles and x values that aren't perfectly spaced according to the empirical rule?
- We note that in most scenarios the data we're concerned with will fit this scenario.
- Later, in chapter 6 , we will use the z-score to find these 'in-between' probabilities and percentiles so pay attention!
- For now, we use z-scores to define outliers and to rewrite the empirical rule.

Z Score: What are we doing here?

- What did we do with the empirical rule?
- We looked at how many standard deviations away the data values were
- The idea here is to be able to find out how many standard deviations the data values we're looking at are from the mean but we allow fractional answers
- answers outside of $-3,-2,-1,0,1,2,3$ which the empirical rule covers

Z Score: How Do We Calculate It?

- $Z=\frac{\text { observation }- \text { mean }}{\text { standard deviation }}=\frac{x-\mu_{x}}{\sigma_{x}}$
- This gives us the number of standard deviations from the mean the observation is
- Note: we consider any observation with a Z score above 3 or below -3 an outlier

Z Score: Example

- The average college student consumes 640 cans of beer per year. Assume the distribution of beers consumed per year per college student is bell-shaped with a mean of 640 cans and a standard deviation of $\mathbf{6 0}$ cans.

Z Score: Example

- $Z_{460}=\frac{460-640}{60}=\frac{-180}{60}=-3$
- $Z_{820}=\frac{820-640}{60}=\frac{180}{60}=3$
- Note the Z score has given us the correct number of standard deviations from the mean for each case!

Z Score: Example

- Recall from the Empirical Rule that about 99.7% of college students consume between 460 and 820 cans of beer per year (+- 3 standard deviations)

The Empirical Rule with z-scores

- About 68% of data fall between $\mathrm{z}=-1$ and $\mathrm{z}=1$
- About 95% of data fall between $\mathrm{z}=-2$ and $\mathrm{z}=2$
- About 99.7% of data fall between $\mathrm{z}=-3$ and $\mathrm{z}=3$
- The distribution must be symmetric and bell shaped to use this Rule

Empirical Rule

Z Score: Example 2

- Let's consider an observation of 680 cans of beer.
- 680 is not 1 , 2 , or 3 standard deviations away
$-z=\frac{680-640}{60}=.6667$
- X=680 is .6667 standard deviations above the mean
- . 6667 indicates this observation is not an outlier because .6667<3 and .6667>-3
- We will be able to find these percentages in chapter 6 so don’t forget z-scores!

Z Score: Example 2

Z Score: Example 3

- Let's consider an observation of 1080 cans of beer.
- 1080 is not 1,2 , or 3 standard deviations away
$-z=\frac{1080-640}{60}=7.3333$
- $X=1080$ is 7.3333 standard deviations above the mean
- $Z=.7333$ indicates this observation is an outlier because 7.3333>3

Z Score: Example 3

Z Score: Example 4

- Let's consider an observation of 500 cans of beer.
-500 is not 1 , 2 , or 3 standard deviations away
$-z=\frac{500-640}{60}=-2.3333$
- $X=500$ is 2.3333 standard deviations below the mean
- -2.3333 indicates this observation isn't an outlier because $-2.3333<3$ and $-2.3333>-3$

Z Score: Example 3

